Sains Malaysiana 53(2)(2024): 285-294
http://doi.org/10.17576/jsm-2024-5302-04
Probing the Potential of Water
Chestnut Powder (Trapa bispinosa) in Improving
the Shelf Life of Buttermilk
(Menyelidik Potensi Serbuk Berangan Air (Trapa bispinosa) dalam Meningkatkan Jangka Hayat Susu Mentega)
SADIA REHMAN
RAO1, NABILA GULZAR1,*,
MUHAMMAD NADEEM1, SAIMA RAFIQ2, FAKHARA KHANUM5,
SHAMAS MURTAZA4 & MUHAMMAD AJMAL3
1Department
of Dairy Technology, University of Veterinary and Animal Sciences, Lahore,
55300, Pakistan
2Department
of Food Science and Technology, University of Poonch, Rawalakot, 12350, Pakistan
3Food Chemistry Lab, Department of Dairy
Technology, University of Veterinary and Animal
Sciences, Lahore, 55300, Pakistan
4Department of Food Science and Technology, Muhammad Nawaz
Sharif University of Agriculture, Multan
5Department of Human Nutrition and Dietetics, University of
Agriculture, DIKhan
Received: 11
January 2023/Accepted: 20
January 2024
Abstract
Buttermilk,
a valuable by-product of butter production, faces challenges in
commercialization due to its limited shelf life and susceptibility to fungal
growth. This study aimed to explore the use of water chestnut powder (WCP) as a
means to extend the shelf life of buttermilk. The investigation involved
evaluating the physicochemical properties, antioxidant activity, antifungal
properties, and stabilizing effects of WCP in buttermilk. Buttermilk samples
were prepared with varying concentrations of WCP (0%, 0.5%, 1%, 1.5%, and 2%)
and stored at 4 °C for one month. The analysis of physicochemical properties
showed that the concentration of WCP had a significant impact on the protein
percentage, ash content, pH, and acidity of the Water Chestnut Buttermilk (WCBM).
Assessment of antioxidant activity using the phosphomolybdenum method showed that, on the 21st day of storage, WCBM3 and WCBM4 exhibited total
antioxidant capacities of 0.57±0.12 and 0.60±0.32, respectively, compared to
the control with a capacity of 0.48±0.07. The antifungal activity of water
chestnut powder buttermilk was evaluated using a qualitative method, which
demonstrated inhibition of fungal growth. In the control and WCBM1 and WCBM2
treatments, the observed inhibition ranged from 1-4 mm. However, as the
concentration of water chestnut powder increased in WCBM3 and WCBM4, the level
of inhibition also increased. Textural analysis further indicated the
stabilizing effect of WCP on buttermilk. Overall, the incorporation of WCP in
buttermilk yielded promising results in terms of enhancing its physicochemical
properties, antioxidant activity, antifungal potential, and textural stability.
This study highlights the potential of water chestnut as an ingredient to
improve the shelf life and quality of buttermilk, creating opportunities for
its commercial utilization in the dairy industry.
Keywords: Antifungal;
buttermilk; physicochemical; sensory; water chestnut
Abstrak
Susu mentega, produk sampingan yang berharga daripada pengeluaran mentega, menghadapi cabaran dalam pengkomersialan kerana jangka hayatnya yang terhad dan mudah terdedah kepada pertumbuhan kulat. Penyelidkan ini bertujuan untuk mengkaji penggunaan serbuk berangan air (WCP) sebagai cara untuk memanjangkan jangka hayat susu mentega. Kajian melibatkan penilaian sifat fizikokimia, aktiviti antioksidan, sifat antikulat dan kesan penstabilan WCP dalam susu mentega. Sampel susu mentega disediakan dengan kepekatan WCP berbeza (0%, 0.5%,
1%, 1.5% dan 2%) dan disimpan pada suhu 4 °C selama satu bulan. Analisis sifat fizikokimia mendedahkan bahawa kepekatan WCP mempunyai kesan yang signifikan terhadap peratusan protein, kandungan abu, pH dan keasidan Air Susu Mentega Berangan (WCBM). Penilaian aktiviti antioksidan menggunakan kaedah phosphomolybdenum menunjukkan bahawa, pada hari penyimpanan ke-21, WCBM3 dan WCBM4 menunjukkan jumlah kapasiti antioksidan masing-masing 0.57±0.12 dan 0.60±0.32, berbanding kawalan dengan kapasiti 0.48±0.07. Aktiviti antikulat serbuk susu mentega berangan air dinilai menggunakan kaedah kualitatif, yang menunjukkan perencatan pertumbuhan kulat. Dalam kawalan dan rawatan WCBM1 dan WCBM2, perencatan yang diperhatikan adalah antara 1-4 mm. Walau bagaimanapun, apabila kepekatan serbuk berangan air meningkat dalam WCBM3 dan WCBM4, tahap perencatan juga meningkat. Analisis tekstur seterusnya menunjukkan kesan penstabilan WCP pada susu mentega. Secara keseluruhannya, penggabungan WCP dalam susu mentega membuahkan hasil yang memberangsangkan daripada segi peningkatan sifat fizikokimia, aktiviti antioksidan, potensi antikulat dan kestabilan tekstur. Kajian ini menyerlahkan potensi berangan air sebagai ramuan untuk meningkatkan jangka hayat dan kualiti susu mentega, mewujudkan peluang untuk penggunaan komersialnya dalam industri tenusu.
Kata kunci: Antikulat; berangan air; deria; fizikokimia; susu mentega
References
Alfasane, M.A., Khondker, M. & Rahman, M.M. 2011. Biochemical
composition of the fruits of water chestnut (Trapa bispinosa Roxb.). Dhaka University Journal of
Biological Sciences 20(1): 95-98. doi.org/10.3329/dujbs.v20i1.8879
Alsaleem, K.A.
2019. Using isoconversional methods to study the
effect of antioxidants on the oxidation kinetics of milk fat. South Dakota
State University. MSc. Thesis (Unpublished)
https://openprairie.sdstate.edu/etd/3405
Association of Official Analytical Chemists (AOAC). 2019. International Official Methods of
Analysis, 21st ed. AOAC International Maryland, USA.
Association of Official Analytical Chemists (AOAC). 2016. Official Methods of
Analysis of AOAC International. Rockville MD: AOAC Int.
AOCS. 1989. Official Methods and Recommended Practices
of the American Oil Chemists’ Society. 4th ed. American Oil Chemists’
Society, Champaign.
Banjara, N., Suhr, M.J. & Hallen-Adams,
H.E. 2015. Diversity of yeast and mold species from a variety of cheese types. Current
Microbiology 70: 792-800. doi.org/10.1007/s00284-015-0790-1
Barukčić, I., Jakopović, K.L. & Božanić,
R. 2019. Whey and buttermilk - Neglected sources of valuable beverages. In Nat. Beverages, edited by Grumezescu, A.M. & Holban, A.M. Massachusetts: Academic Press. pp. 209-242.
Chen, X., Gao, C., Li, H., Huang, L., Sun, Q., Dong,
Y., Tian, C., Gao, S., Dong, H., Guan, D. & Hu, X. 2010. Identification and
characterization of microRNAs in raw milk during different periods of
lactation, commercial fluid, and powdered milk products. Cell Research 20(10): 1128-1137. doi: 10.1038/cr.2010.80
Consumi, M., Tamasi, G., Pepi, S., Leone, G., Bonechi, C., Magnani, A., Donati, A. & Rossi, C. 2022. Analytical composition of
flours through thermogravimetric and rheological
combined methods. Thermochimica Acta 711: 179204. doi.org/10.1016/j.tca.2022.179204
Dopazo, V.,
Luz, C., Calpe, J., Vila‐Donat, P., Rodriguez,
L. & Meca, G. 2022. Antifungal properties of whey
fermented by lactic acid bacteria in films for the preservation of cheese
slices. International Journal of Dairy Technology 75(3): 619-629. doi.org/10.1111/1471-0307.12847
Dudkiewicz, A.,
Hayes, W. & Onarinde, B. 2022. Sensory quality
and shelf-life of locally produced British butters compared to large-scale,
industrially produced butters. British Food Journal 124(10): 3220-3235. doi.org/10.1108/BFJ-02-2021-0172
Echegaray, N., Munekata, P.E., Centeno, J.A., Domínguez,
R., Pateiro, M., Carballo, J. & Lorenzo, J.M.
2020. Total phenol content and antioxidant activity of different celta pig carcass locations as affected by the finishing
diet (chestnuts or commercial feed). Antioxidants 10(1): 5. doi: 10.3390/antiox10010005
Ewe, J.A. & Loo, S.Y. 2016. Effect of cream
fermentation on microbiological, physicochemical and rheological properties of L. helveticus-butter. Food Chemistry 201:
29-36. doi: 10.1016/j.foodchem.2016.01.049
Gebreselassie, N.,
Abrahamsen, R.K., Beyene, F., Abay,
F. & Narvhus, J.A. 2016. Chemical composition of
naturally fermented buttermilk. International Journal Dairy Technology 69(2): 200-208. doi.org/10.1111/1471-0307.12236
Ghanshyambhai, M.R., Balakrishnan,
S. & Aparnathi, K.D. 2015. Standardization of the
method for utilization of paneer whey in cultured buttermilk. Journal of
Food Science and Technology 52: 2788-2796. doi:
10.1007/s13197-014-1301-2
Hati, S.,
Das, S. & Mandal, S. 2019. Technological advancement of functional
fermented dairy beverages. In Engineering Tools in the Beverage Industry,
edited by Grumezescu, A.M. & Holban,
A.M. Woodhead Publishing. pp. 101-136.
doi.org/10.1016/B978-0-12-815258-4.00004-4
Huis, in't Veld J.H. 1996.
Microbial and biochemical spoilage of foods: An overview. International
Journal of Food Microbiology 33(1): 1-8. https://doi.org/10.1016/0168-1605(96)01139-7
Hymery, N., Vasseur, V., Coton, M., Mounier, J., Jany, J.L., Barbier, G. & Coton, E. 2014.
Filamentous fungi and mycotoxins in cheese: A review. Comprehensive Review
Food Science Food Safety 13: 437-456. doi:
10.1111/1541-4337.12069
Latoch, A., Libera,
J. & Stasiak, D.M. 2019. Physicochemical
properties of pork loin marinated in Kefir, yoghurt or buttermilk and cooked
sous vide. Acta Scientiarum Polonorum Technologia Alimentaria 18: 163-171. doi: 10.17306/J.AFS.0642
Ledenbach, L.H.
& Marshall, R.T. 2009. Microbiological spoilage of dairy products. In Compendium
of the Microbiological Spoilage of Foods and Beverages, edited by Sperber, W. & Doyle, M. Food Microbiology and Food Safety.
New York: Springer. DOI:10.1007/978-1-4419-0826-1_2
Libudzisz, Z. & Stepaniak,
L. 2011. Fermented milks | buttermilk. Encyclopedia
of Dairy Sciences. 2nd ed. Massachusetts: Academic Press. pp. 489-495. DOI:10.1016/B978-0-12-374407-4.00183-7
Lutfi, Z., Nawab, A., Alam, F. & Hasnain, A. 2017. Morphological, physicochemical, and
pasting properties of modified water chestnut (Trapabispinosa)
starch. International Journal Food Properties 20(5): 1016-1028. doi.org/10.1080/10942912.2016.1193514
Mandal,
S.M., Migliolo, L., Franco, O.L. &
Ghosh, A.K. 2011. Identification of an antifungal peptide from Trapa natans fruits
with inhibitory effects on Candida tropicalis biofilm formation. Peptides 32(8): 1741-1747. doi: 10.1016/j.peptides.2011.06.020
Martínez, S.,
Fuentes, C. & Carballo, J. 2022. Antioxidant activity, total phenolic
content and total flavonoid content in sweet chestnut (Castanea sativa Mill.) cultivars grown in Northwest Spain under different
environmental conditions. Foods 11(21): 3519. doi.org/10.3390/foods11213519
Meilgaard, M.C., Civille, G.V. & Carr, B.T.
2007. Sensory Evaluation Techniques. 4th ed. Boca Raton: CRC Press. doi.org/10.1201/b16452
Morin, P., Pouliot, Y. & Britten, M. 2008. Effect of buttermilk made from
creams with different heat treatment histories on properties of rennet gels and
model cheeses. Journal of Dairy Science 91(3): 871-882.doi.org/10.3168/jds.2007-0658
Nabasree, D.
& Bratati, D. 2007. Antioxidant activity of Azadirachta indica A. Juss. (neem) leaf. Phytoche and Pharma III: 449-457.
Narvhus, J.A.
& Abrahamsen, R.K. 2023. Traditional and modern Nordic fermented milk
products: A review. International Dairy Journal 15: 105641. doi.org/10.1016/j.idairyj.2023.105641
Peng, L.
& Jiang, Y.
2004. Effects of heat treatment on quality of fresh-cut Chinese water chestnut. International Journal Food
Science and Technology 39(2): 143-148. DOI:10.1046/j.0950-5423.2003.
00767.x
Pitt, J.I. & Hocking, A.D. 2009. Fungi and
Food Spoilage. New York: Springer. doi.org/10.1007/978-0-387-92207-2
Quasem, J.M., Mazahreh, A.S., Afaneh, I.A.
& Omari, A. 2009. Solubility of solar dried jameed. Pakistan Journal Nutrition 8(2): 134-138. DOI: 10.3923/pjn.2009.134.138
Razvy, M.A., Kabir, A.H. & Hoque, M.A.
2011. Antifungal activity of fruit extracts of different water chestnut
varieties. Notulae Scientia Biologicae 3(1): 61-64. doi.org/10.15835/nsb315596
Romani, A., Simone, G., Campo, M., Moncini, L. & Bernini, R. 2021. Sweet chestnut
standardized fractions from sustainable circular process and green tea extract: In vitro inhibitory activity against phytopathogenic fungi for innovative applications in green agriculture. PLoS ONE 16(2. doi.org/10.1371/journal.pone.0247298
Shafi, S., Wani, I.A., Gani, A., Sharma, P., Wani, H.M., Masoodi, F.A.,
Khan, A.A. & Hamdani, A.M. 2016. Effect of water
and ether extraction on functional and antioxidant properties of Indian horse
chestnut (Aesculus indica Colebr) flour. Journal Food Measured and
Characteristic 10(2): 387-395. DOI: 10.1007/s11694-016-9317-0
Steel, R.G.D., Torrie,
J.H. & Dicky, D.A. 1997. Principles and Procedures of Statistics: A
Biometrical Approach. 3rd ed. New York: McGraw Hill. pp. 352-358.
Tesch, S.
& Schubert, H. 2002. Influence of increasing viscosity of the
aqueous phase on the short-term stability of protein stabilized emulsions. Food Engineering 52(3):
305-312. DOI:10.1016/S0260-8774(01)00120-0
Xu,
Z., Meenu, M., Chen, P. & Xu, B. 2020.
Comparative study on phytochemical profiles and antioxidant capacities of
chestnuts produced in different geographic area in China. Antioxidants 9(3):
190.
You, Y., Duan, X., Wei,
X., Su, X., Zhao, M., Sun, J., Ruenroengklin, N.
& Jiang, Y. 2007. Identification of major phenolic compounds of Chinese
water chestnut and their antioxidant activity. Molecules 12(4): 842-852. doi: 10.3390/12040842
Yu, L., Nanguet,
A.L. & Beta, T. 2013. Comparison of antioxidant properties of refined and
whole wheat flour and bread. Antioxidants 2: 370-383. doi: 10.3390/antiox2040370
Zhan, G., Pan, L., Tu, K.
& Jiao, S. 2016. Antitumor, antioxidant, and nitrite scavenging effects of
Chinese water chestnut (Eleocharis dulcis) peel flavonoids. Journal of Food Science 81(10): H2578-H2586. doi: 10.1111/1750-3841.13434
Zhang, J., Jiang, H., Du, Y., Keyhani,
N.O., Xia, Y. & Jin, K. 2019. Members of chitin
synthase family in Metarhizium acridum differentially affect fungal growth, stress
tolerances, cell wall integrity and virulence. PLoS Pathogens 15(8): e1007964. https://doi.org/10.1371/journal.ppat.1007964
*Corresponding author; email: nabila.gulzar@uvas.edu.pk
|